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Abstract: This study aims to provide a comprehensive analysis of the sales characteristics and pricing 
strategies of vegetable commodities. Considering the high demand for the freshness of vegetable 
commodities as well as the interrelationships and price fluctuations among different categories, 
superstores need to take into account a variety of factors, including historical sales volume, seasonal 
variations, and availability, in order to formulate comprehensive pricing and replenishment strategies. 
This study examines the relationship between sales volume and cost-plus pricing of each category of 
vegetables in the off-season and peak seasons, using the categories of vegetables as the basis for 
classification. A polynomial fitting method was used to obtain the functional relationship between 
the two and to verify the fitting effect, which showed that the mean value of accuracy exceeded 95.6%. 
In addition, the sales volume is forecasted by a time series model and the smoothness of the series is 
verified. Under the premise of maximizing the revenue of the superstore, this study uses the pricing 
of each category as a decision variable, establishes an optimization model, and obtains the specific 
pricing strategy of each category by a differential evolutionary algorithm. The finalized pricing 
strategies were: 6.87 yuan/kg for flowers and leaves, 9.83 yuan/kg for edible mushrooms, 10 yuan/kg 
for aquatic root meridians, 13.64 yuan/kg for chili peppers, 7 yuan/kg for eggplant, and 10.99 yuan/kg 
for cauliflower. These results provide an important decision-making basis for the superstores to make 
more effective pricing and replenishment strategies for vegetables to meet market demand and 
maximize revenue. Through in-depth analysis of the relationship between sales data and pricing, 
superstores can better respond to changes in different seasons and market conditions, thereby 
improving operational efficiency and providing consumers with better quality goods and services. 

1. Introduction 
As an important agricultural product indispensable to the daily life of urban and rural residents, 

the efficiency and high quality of vegetable supply are crucial to social stability and the improvement 
of people's living standards. Ensuring the quality of vegetable supply is an issue that involves a wide 
range of people's livelihoods, so supermarkets need to take a series of measures to ensure that the 
supply of vegetables can meet people's demand for fresh and diversified vegetables. This not only 
requires supermarkets to formulate a scientific replenishment plan based on historical sales data and 
customer demand, but also needs to change the sales mix and other ways to maximize the supply of 
vegetables to meet the needs of the residents, and at the same time to achieve the maximization of the 
profits of the supermarkets themselves. 

First of all, supermarkets can make more accurate replenishment plans by deeply analyzing 
historical sales data and customer demand. By analyzing the sales of different vegetable categories in 
detail, supermarkets can predict the sales peaks of different seasons and holidays, and then reasonably 
arrange the replenishment time and quantity. This kind of refined planning not only reduces the risk 
of inventory backlog but also improves the turnover rate of vegetables and reduces the loss caused 
by long-time storage of vegetables. In addition, supermarkets can also work closely with suppliers, 
and timely understanding of the origin of vegetables, growth cycle and other information, in order to 
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better arrange replenishment plans to ensure that the supply of vegetables can be synchronized with 
customer demand. 

Secondly, supermarkets can change the sales mix to ensure that the supply of vegetables is 
maximized. Supermarkets can be based on seasonal and customer demand changes, flexible 
adjustments to the location of the display of vegetables and sales strategy, so that the hot vegetables 
are more prominent, but also to promote the sales of other categories. For example, for different 
seasons, supermarkets can increase the display of cool fruits such as watermelon and cucumber in 
summer, while increasing the supply of hot vegetables such as cabbage and radish in winter. In 
addition, supermarkets can also introduce pre-packaged vegetables and processed vegetable products 
to increase the added value of the products and meet the needs of customers who live a fast-paced 
life, thus further enhancing the sales volume of vegetables and the profits of supermarkets. 

In conclusion, in the process of ensuring the supply of vegetables, hypermarkets need to take into 
account market demand, supply chain and sales strategy and other aspects, in order to ensure that the 
supply of vegetables is efficient, and high quality, to meet the growing demand of residents, but also 
to maximize their own profits. This not only helps to improve the quality of life of urban and rural 
residents but also promotes the sustainable development of supermarkets. Therefore, superstores need 
to continuously optimize operation management and improve supply chain efficiency in order to 
adapt to changes in the market and the diversification of customer needs and provide society with 
better quality vegetable products and services. 

2. Literature review 
At present, many scholars have carried out research on related problems. 
For the demand forecasting problem, most of them belong to time series forecasting. There are 

many mature algorithms available. Yang et al [1] proposed a weighted slow feature analysis-based 
adaptive feature extraction (WSFA-AFE) method for multivariate time series forecasting. First, the 
weighted SFA (WSFA) algorithm is developed to extract slow features weighted by contribution; 
then, an improved adaptive sliding window algorithm is designed for self-judging the historical 
information of the slow features for inputs; finally, the WSFA-AFE method is applied to different 
ANN models, and combined with several benchmark datasets and practice datasets of the wastewater 
treatment process to validate the WSFA-AFE method's out-of-model performance. The results show 
that the WSFA-AFE method can adaptively extract feature variables from multivariate time series, 
which leads to better predictive modeling performance of multivariate time series for ANNs. In 
addition, the robustness of the proposed method is also demonstrated. Chen et al [2] proposed a hybrid 
ARIMA-LR model based on an autoregressive integrated moving average model (ARIMA) and linear 
regression model (LR) using an improved Bayesian combination model. Through the actual 
prediction of civil aviation cargo volume, it is found that the ARIMA-LR hybrid model not only better 
adapts to the changes caused by unexpected events, but also has a higher overall prediction accuracy 
than the ARIMA model and the LR model. The three indicators of the ARIMA-LR hybrid model, 
namely, mean absolute error (MAE), mean squared error (MSE), and mean absolute percentage error 
(MAPE), are respectively 1.0% lower than those of the ARIMA model by 1.06, 29.02, and 0.03; and 
compared with the LR model by 3.00, 92.00, and 0.06, respectively. Fu et al [3] proposed a self-
attentive architecture with an information-interaction module known as a mix former for multivariate 
chaotic time series forecasting tasks. First, based on a rethinking of the multivariate data structure, a 
set of cross-convolution operators capable of automatically updating the parameters are utilized to 
compensate for the lack of phase space reconstruction, and an explicitly designed feature 
reconstruction module is proposed. Then, for the problem of interaction and fusion between series 
information and channel information, an information interaction module is proposed to realize feature 
communication by expanding and contracting dimensions. By breaking the communication barrier 
between series information and channel information, the feature representation capability is 
enhanced.Finally, we construct the mixformer that combines local sparse features and global 
contextual features. 

In their study of nonlinear programming, Molina-Pérez et al [4] proposed a new proposal based 
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on two basic strategies to improve the performance of differential evolutionary algorithms for solving 
MINLP problems. The first strategy considers a set of "well-adapted-unfeasible solutions" that help 
to explore promising regions from infeasible contours. It reduces the vulnerability of solutions to be 
attracted to larger discontinuous feasible components with unpromising objective function values. 
The second is composite trial vector generation to improve combinatorial exploration while ensuring 
strong convergence to the final solution. Sixteen well-known MINLP problems are used in several 
experiments to evaluate the performance of the proposed algorithm and compare it with state-of-the-
art EA. The results provided by the proposal show better performance in terms of quality, robustness 
and computational cost. Huang et al [5] called the fuzzy interval credibility constraint (FIC) model 
combining fuzzy interval set (FIS) and interval nonlinear programming (INP) as the FIC-INP model 
and applied it to two cases. After building the FIC-INP model, the upper and lower bounds on the 
cost of disinfectant enhancers can be obtained for different combinations of upper and lower 
confidence limits for the two cases. The results show that the upper and lower booster costs increase 
as the lower confidence limit increases. The upper and lower booster costs increase with the number 
of boosters. For lower bound constraint confidence levels in the range of 0.6 ~ 0.9, the upper and 
lower booster costs increase as the trapezoidal distribution increases/widens, and the booster cost 
interval increases as the interval uncertainty increases. When the lower bound constraint confidence 
level is 0.5, the upper and lower booster costs decrease under a shrinking/narrowing trapezoidal 
distribution, and the booster cost interval increases under a trapezoidal distribution with larger 
intervals. Interval uncertainty has a higher impact than fuzzy uncertainty. The obtained results can 
provide more information for managers to develop a booster solution under fuzzy and interval 
uncertainty. Kırdar et al [6] addressed both objectives through a unified approach that integrates two 
decision support methods: regression and optimization. In the first stage, factors affecting the time to 
reach the curing temperature are identified and they are related using a multiple linear regression 
model. In the second stage, the regression model from the first stage is used and two objectives are 
considered to determine the efficient placement of parts in the autoclave: minimizing the duration of 
the heating phase and the maximum time delay between parts to reach the curing temperature. The 
former corresponds to increasing productivity and the latter to minimizing quality loss. Then Kırdar 
et al. proposed a bi-objective mixed integer nonlinear programming model and its equivalent linear 
model to generate the effective boundaries. In addition, a multi-objective evolutionary algorithm and 
its mechanism for solving the problem are proposed in order to obtain a solution faster. The method 
is applied to a real case of a composite plant. The estimated values of the regression model are very 
close to the realized values and considerable gains are observed for both objectives using the 
optimization tool. 

This shows that the relevant research methods are more mature. However, there is a lack of detailed 
research on vegetable replenishment and pricing in supermarkets. Therefore, this paper focuses on 
the problem of vegetable replenishment and pricing strategy development in supermarkets. 

3. Exploring the relationship between volume and pricing 
Cost-plus pricing is based on product cost, product price = product cost + product cost Cost margin, 

i.e., product price = product cost (1 + margin). 
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Fig.1 Relationship between sales volume and cost-plus pricing of edible mushrooms during peak 

selling season and the fitted equation 
In this paper, the product price used is the unit price of sales that have been given: in terms of 

category, based on the law of sales, respectively, six categories of vegetables' off-peak and peak 
season sales and pricing relationship graph, to get the fitting equation, respectively, sales off-peak 
and peak season sales of the total amount of sales and cost-plus pricing to be fitted. The fitted graphs 
for edible mushrooms and eggplant categories with the fitted equations are shown in Figure 1. 

 
Fig.2 Relationship between sales volume and cost-plus pricing of edible mushrooms during the off-

season and the fitted equation 
Where the pricing of each category in each month is the average of the pricing of the individual 

items sold in that month Corresponding to foliage, edible mushrooms, aquatic roots and tubers, 
peppers, eggplants, and cauliflower, respectively. 

The equations for sales volume and cost-plus pricing of edible mushrooms during peak and off-
season selling seasons were obtained as shown in Figures 1 and 2: 

𝑠𝑠2 = −1696.68𝑝𝑝24 + 74363.35𝑝𝑝23 − 1218594.21𝑝𝑝22 + 8848271.48𝑝𝑝2 − 24016149.49 (1) 

𝑠𝑠2′ = −24.78𝑝𝑝2′4 + 1209.17𝑝𝑝2′3 − 21812.07𝑝𝑝2′2 + 172235.02𝑝𝑝2′ − 499837.50        (2) 
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Fig.3 Relationship between sales volume of eggplant and cost-plus pricing during peak selling 

season and the fitted equation 
 

 
Fig.4 Relationship between sales volume and cost-plus pricing of eggplant in the off-season of sales 

and the fitted equations 
The equations for sales volume and cost-plus pricing of eggplant in peak and off-season sales 

seasons are obtained in Figures 3 and 4: 

𝑠𝑠5 = −32.60𝑝𝑝54 + 1296.40𝑝𝑝53 − 19124.81𝑝𝑝52 − 124068.37𝑝𝑝5 − 298398.07        (3) 

𝑠𝑠5′ = 2101.41𝑝𝑝5′4 − 66389.10𝑝𝑝5′3 + 782980.37𝑝𝑝5′2 − 4086054.33𝑝𝑝5′ + 7962355.95  (4) 
In order to verify the reasonableness of the regression equation, this paper analyzes the error of 

the regression equation: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑠𝑠𝑖𝑖−𝑠̂𝑠𝑖𝑖|

𝑠𝑠𝑖𝑖
𝑁𝑁
𝑖𝑖=1                                                            (5) 

The results of the error analysis are shown in Figure 5. 
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Fig.5 Fitting accuracy of each category at different stages 

As can be seen in Figure 5, the average value of the prediction accuracy of each category at 
different stages is more than 95.6%, indicating that the fitting effect is more accurate according to the 
classification of sales off-peak and peak seasons given in this paper. 

4. Replenishment determination based on time series forecasting 
Before using time series for forecasting, the time series Z needs to be tested for smoothness: 
Original hypothesis 𝐻𝐻0: the sequence 𝑍𝑍 is smooth 
Alternative hypothesis 𝐻𝐻1: There is an upward or downward trend in the sequence 𝑍𝑍 
Set the time series as 2020.7.1 to 2020.7.7, 2021.7.1 to 2021.7.7, and 2022.7.1 to 2022.7.7, import 

the sales volume of each category for each day, set the confidence level as 95%, and analyze the 
smoothing analysis by using SPSS, and obtain the serial autocorrelation plot (ACF) and serial partial 
autocorrelation plot (PACF) respectively. As shown in Figure 6. 

 
Fig.6 Sequential residual ACF and residual PACF 

From Figure 6, the data are all within the confidence interval. Therefore, the original hypothesis 
𝐻𝐻0 cannot be rejected, which supports to some extent that the model is trendless, i.e., the sequence 𝑍𝑍 
is smooth. 
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Based on the verified smoothness of the series, this paper uses AR modeling to predict the daily 
replenishment of each category for a one-week period from 2023.7.1 to 2023.7.7: 

𝑧𝑧𝑡𝑡 = 𝜃𝜃0 + 𝜃𝜃1𝑧𝑧𝑡𝑡−1 + 𝜃𝜃2𝑧𝑧𝑡𝑡−2 + ⋯⋯+ 𝜃𝜃𝑝𝑝𝑧𝑧𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡                                (6) 

Based on the above equation, the total daily replenishment for each of the six categories of 
vegetables per day was obtained as shown in Table 1: 

Table 1 Total daily replenishment for each category of vegetables from 2023.7.1-2023.7.7 

 July 1 July 2 July 3 July 4 July 5 July 6 July 7 
philodendron 118.78 137.36 144.51 133.34 130.20 136.82 138.06 

edible mushroom 37.91 33.13 33.16 34.90 33.71 33.87 34.20 
Aquatic rhizomes 40.69 40.98 41.26 41.10 41.12 41.13 41.12 

capsicum 41.09 45.31 44.17 42.70 43.37 43.84 43.50 
eggplant 16.56 14.52 14.17 14.87 14.89 14.66 14.69 

cauliflower 42.60 43.90 44.49 43.99 44.16 44.15 44.13 

5. Pricing strategy development based on nonlinear programming models 
In order to maximize the revenue of the superstore, nonlinear planning is formulated based on the 

obtained daily replenishment of each category of vegetables: 
1) Define the decision variable: this paper sets the decision variable as p_i, the pricing of the ith 

category 
2) Establish the objective function: in order to make the superstore profit maximization, that is, 

the required revenue is maximized: 

𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝑝𝑝𝑖𝑖 ⋅ 𝑠𝑠𝑖𝑖 ⋅ (1 − 𝑙𝑙𝑖𝑖)6
𝑖𝑖=1                                                (7) 

Where 𝑙𝑙𝑖𝑖 represents the attrition rate of the ith category: 

𝑙𝑙𝑖𝑖 = 1
𝑛𝑛
∑ 𝑙𝑙𝑖𝑖𝑗𝑗
𝑛𝑛
𝑗𝑗=1                                                             (8) 

(1 − 𝑙𝑙𝑖𝑖) represents the real rate of return, to maximize the product of the return and the real rate 
of return, i.e., to maximize the real return. 

3) Construct the constraints: the sum of the week's sales is not more than the total amount of 
replenishment for the week: 

∑𝑠𝑠𝑖𝑖 ≤ ∑ 𝑞𝑞𝑖𝑖𝑡𝑡
7
𝑡𝑡=1                                                           (9) 

Where 𝑞𝑞𝑖𝑖𝑡𝑡 is the replenishment quantity of the ith category on day t; 
The quartiles are denoted by 𝑄𝑄1,𝑄𝑄2,𝑄𝑄3 and each range includes 25% of the data, in this paper, we 

take the upper quartile and the lower quartile, as shown in Figure 7: 

 
Fig.7 Box plots of the distribution of unit prices of vegetables sold by category 
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Constraints on the pricing of each category of vegetables: 

𝑄𝑄𝑖𝑖1 ≤ 𝑝𝑝𝑖𝑖 ≤ 𝑄𝑄𝑖𝑖3                                                           (10) 

𝑠𝑠. 𝑡𝑡. �
∑ 𝑠𝑠𝑖𝑖 ≤ ∑ 𝑞𝑞𝑖𝑖𝑡𝑡

7
𝑡𝑡=1

𝑄𝑄𝑖𝑖1 ≤ 𝑝𝑝𝑖𝑖 ≤ 𝑄𝑄𝑖𝑖3
                                                       (11) 

Construct a nonlinear plan based on the objective function and constraints: 

𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝑝𝑝𝑖𝑖 ⋅ 𝑠𝑠𝑖𝑖 ⋅ (1 − 𝑙𝑙𝑖𝑖)6
𝑖𝑖=1                                             (12) 

𝑠𝑠. 𝑡𝑡. �
∑ 𝑠𝑠𝑖𝑖 ≤ ∑ 𝑞𝑞𝑖𝑖𝑡𝑡

7
𝑡𝑡=1

𝑄𝑄𝑖𝑖1 ≤ 𝑝𝑝𝑖𝑖 ≤ 𝑄𝑄𝑖𝑖3
                                                       (13) 

For nonlinear planning models, intelligent optimization algorithms are a common way to solve 
them. In this paper, the model is solved using a differential evolutionary algorithm. 

Population initialization 
The population size M is chosen as 100, and M individuals are randomly and uniformly generated 

in the solution space. 

𝑋𝑋𝑖𝑖(0) = �x𝑖𝑖,1(0), 𝑥𝑥𝑖𝑖,2(0), 𝑥𝑥𝑖𝑖,3(0), … , 𝑥𝑥𝑖𝑖,𝑛𝑛(0)� , 𝑖𝑖 = 1,2,3, … ,𝑀𝑀                    (14) 

Among them. 

𝑥𝑥𝑖𝑖,𝑗𝑗(0) = 𝐿𝐿𝑗𝑗−min + rand(0,1) �𝐿𝐿𝑗𝑗−max − 𝐿𝐿𝑗𝑗−min�, 𝑖𝑖 = 1,2,3, … ,𝑀𝑀, 𝑗𝑗 = 1,2,3, … ,𝑛𝑛    (15) 

Mutation. 
In the g-th iteration, three individuals 𝑋𝑋𝑝𝑝1(𝑔𝑔),𝑋𝑋𝑝𝑝2(𝑔𝑔),𝑋𝑋𝑝𝑝2(𝑔𝑔) are randomly selected from the 

population with 𝑝𝑝1 ≠ 𝑝𝑝2 ≠ 𝑝𝑝3 ≠ 𝑖𝑖, generating a vector of variation: 

𝐻𝐻𝑖𝑖(𝑔𝑔) = 𝑋𝑋𝑝𝑝1(𝑔𝑔) + 𝐹𝐹 ⋅ �𝑋𝑋𝑝𝑝2(𝑔𝑔) − 𝑋𝑋𝑝𝑝3(𝑔𝑔)�                                  (16) 

Where 𝛥𝛥𝑝𝑝2,𝑝𝑝3(𝑔𝑔) = 𝑋𝑋𝑝𝑝2(𝑔𝑔) − 𝑋𝑋𝑝𝑝3(𝑔𝑔) is the difference vector and 𝐹𝐹 is the scaling factor. 
The three randomly selected individuals in the variance operator are ranked from best to worst to 

obtain 𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋, corresponding to the fitness 𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓, the variance operator reads: 

𝑉𝑉𝑖𝑖 = 𝑋𝑋𝑏𝑏 + 𝐹𝐹𝑖𝑖(𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑤𝑤)                                            (17) 
Also, the value of F varies adaptively according to the two individuals generating the difference 

vector: 

𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑙𝑙 + (𝐹𝐹𝑢𝑢 − 𝐹𝐹𝑙𝑙)
𝑓𝑓𝑚𝑚−𝑓𝑓𝑏𝑏
𝑓𝑓𝑤𝑤−𝑓𝑓𝑏𝑏

,𝐹𝐹𝑙𝑙 = 0.1,𝐹𝐹𝑢𝑢 = 0.9                          (18) 

The mutation strategy is: 

𝐷𝐷𝐷𝐷/ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 /1:𝑉𝑉𝑖𝑖(𝑔𝑔) = 𝑋𝑋𝑝𝑝1(𝑔𝑔) + 𝐹𝐹�𝑋𝑋𝑝𝑝2(𝑔𝑔) − 𝑋𝑋𝑝𝑝3(𝑔𝑔)�                 (19) 

𝐷𝐷𝐷𝐷/ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 /1:𝑉𝑉𝑖𝑖(𝑔𝑔) = 𝑋𝑋best (𝑔𝑔) + 𝐹𝐹�𝑋𝑋𝑝𝑝1(𝑔𝑔) − 𝑋𝑋𝑝𝑝2(𝑔𝑔)�                (20) 

𝐷𝐷𝐷𝐷/ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/1 ∶ 𝑉𝑉𝑖𝑖(𝑔𝑔) = 𝑋𝑋𝑖𝑖(𝑔𝑔) + 𝐹𝐹 �𝑋𝑋best (𝑔𝑔) − 𝑋𝑋𝑖𝑖(𝑔𝑔)� + 𝐹𝐹�𝑋𝑋𝑝𝑝1(𝑔𝑔) − 𝑋𝑋𝑝𝑝2(𝑔𝑔)� (21) 

𝐷𝐷𝐷𝐷/ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 /2:𝑉𝑉𝑖𝑖(𝑔𝑔) = 𝑋𝑋best (𝑔𝑔) + 𝐹𝐹�𝑋𝑋𝑝𝑝1(𝑔𝑔) − 𝑋𝑋𝑝𝑝2(𝑔𝑔)� + 𝐹𝐹�𝑋𝑋𝑝𝑝3(𝑔𝑔) − 𝑋𝑋𝑝𝑝4(𝑔𝑔)�  (22) 

𝐷𝐷𝐷𝐷/ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 /2:𝑉𝑉𝑖𝑖(𝑔𝑔) = 𝑋𝑋𝑝𝑝1(𝑔𝑔) + 𝐹𝐹�𝑋𝑋𝑝𝑝2(𝑔𝑔) − 𝑋𝑋𝑝𝑝3(𝑔𝑔)� + 𝐹𝐹�𝑋𝑋𝑝𝑝4(𝑔𝑔) − 𝑋𝑋𝑝𝑝5(𝑔𝑔)�  (23) 

Crossover: 

𝑣𝑣𝑖𝑖,𝑗𝑗 = �
ℎ𝑖𝑖,𝑗𝑗(𝑔𝑔), rand (0,1) ≤ 𝑐𝑐𝑐𝑐
𝑥𝑥𝑖𝑖,𝑗𝑗(𝑔𝑔),  else 

                                   (24) 

Where cr∈[0,1] is the crossover probability, taken as 𝑐𝑐𝑐𝑐 =  0.7. 
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Select: 

𝑋𝑋𝑖𝑖(𝑔𝑔 + 1) = �
𝑉𝑉𝑖𝑖(𝑔𝑔),𝑓𝑓(𝑉𝑉𝑖𝑖(𝑔𝑔)) < 𝑓𝑓(𝑋𝑋𝑖𝑖(𝑔𝑔))
𝑋𝑋𝑖𝑖(𝑔𝑔),  else 

                            (25) 

The model parameter settings are shown in Table 2. 
Table 2 Differential evolutionary algorithm parameter settings 

Parameter value 
Number of populations 100 

Crossing rate 0.7 
Variation rate 0.85 

Allowable error of convergence 10−10 
Convergence tolerance judgment number 1000 
Maximum allowable number of iterations 30000 

The pricing of vegetables can be obtained from a differential evolutionary algorithm as shown in 
Table 3. 

Table 3 Pricing of various types of vegetables 

class Unit price (yuan/kg) 
Foliage 6.87 

Edible Mushrooms 9.83 
Aquatic Roots 10.00 

Peppers 13.64 
Eggplant 7.00 

Cauliflower 10.99 

6. Conclusions 
In view of the high demand for freshness of vegetable commodities and the characteristics of 

interrelationships and price fluctuations that exist between different categories, superstores need to 
take into account a variety of factors, such as historical sales volume, seasonal variations, and 
availability, in order to formulate a comprehensive pricing and replenishment strategy that analyzes 
and forecasts the sales of various categories and individual vegetable items. 

In this paper, the categories of vegetables are used as the basis for segmentation, and the 
relationship between sales volume and cost-plus pricing for each category of vegetables in the off-
season and peak seasons is investigated. A polynomial fitting method is used to obtain the functional 
relationship between the two and to verify the fitting effect, which shows that the mean value of 
accuracy is more than 95.6%. In addition, in order to forecast the sales volume from July 1 to 7, 2023, 
a time series model was developed and the series was tested for smoothness using SPSS software. It 
was found that the autocorrelation and partial autocorrelation plots of the series are within the 
confidence interval, indicating that the time series is relatively smooth. 

Under the premise of ensuring the revenue maximization of the superstore, this paper takes the 
pricing of each category as a decision variable and establishes an optimization model with the 
objective of maximizing the revenue of the superstore. The specific pricing strategy of each category 
is obtained by solving the differential evolution algorithm. The finalized pricing strategies were: 6.87 
yuan/kg for flower and leaf, 9.83 yuan/kg for edible mushrooms, 10 yuan/kg for aquatic root 
meridians, 13.64 yuan/kg for chili peppers, 7 yuan/kg for eggplant, and 10.99 yuan/kg for cauliflower. 

These results provide an important decision-making basis for the superstore, enabling it to 
effectively develop pricing and replenishment strategies for vegetables to meet market demand and 
maximize revenue. Meanwhile, through in-depth analysis of the relationship between sales data and 
pricing, superstores can better respond to changes in different seasons and market conditions, thereby 
improving operational efficiency and providing better quality goods and services to consumers. 
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